รูปที่ ๑ แสดงให้เห็นว่า ข้อมูลที่มีค่ามาก และข้อมูลที่มีค่าน้อย เมื่อนับจากข้อมูลที่มีค่ากลางจะมีจำนวนเท่าๆ กัน ดูจากรูปจะเห็นว่า ปลายทั้งสองข้างของโค้งมีลักษณะสมมาตร (Symmetrical) รูปการแจกแจงความถี่ของข้อมูลที่มีลักษณะเช่นนี้ เรียกว่า โค้งปกติ (Normal curve) หรือโค้งรูประฆังคว่ำ
สำหรับรูปที่ ๒ และรูปที่ ๓ นั้น เป็นการแจกแจงความถี่ของข้อมูลที่มีลักษณะที่เรียกว่า มีความเบ้ (Skewness) นั่นคือ ข้อมูลค่าน้อยมีจำนวนมากกว่าข้อมูลที่มีค่ามาก หรือที่เรียกว่า เบ้ไปทางบวก (Positively skewed) ซึ่งได้แก่รูปที่ ๒ และข้อมูลค่ามาก มีจำนวนมากกว่าข้อมูลที่มีค่าน้อย หรือที่เรียกว่า เบ้ไปทางลบ (Negatively skewed) ซึ่งได้แก่ รูปที่ ๓
การแจกแจงความถี่ของข้อมูลลักษณะอื่นที่จะยกมาให้ดู นอกจากนี้ก็มีรูปสี่เหลี่ยมผืนผ้า (รูปที่ ๔) รูปตัว U (รูปที่ ๕) รูปตัว J (รูปที่ ๖) และรูปตัว J กลับ (รูปที่ ๗) ดังแสดงไว้ข้างล่างนี้
๓. การหาข้อสรุปเกี่ยวกับลักษณะต่างๆ ของข้อมูล (Summarization)
ข้อมูลแต่ละชุดที่เก็บรวบรวมมาได้ อาจมีลักษณะการแจกแจงความถี่แตกต่างกันไปดังได้กล่าวแล้วในข้อ ๒ ในการวิเคราะห์ข้อมูล เราจำเป็นต้องศึกษาอย่างละเอียดละออว่า ข้อมูลชุดนั้นๆ บอกอะไรแก่เราบ้าง เช่น สมมุติว่า มีข้อมูลเกี่ยวกับรายได้ต่อปีของคนจำนวนหนึ่ง ซึ่งเป็นตัวอย่างของประชากรทั้งประเทศ สิ่งต่างๆ ที่อาจต้องการทราบก็คือ ประชากรมีรายได้ต่อปีเฉลี่ยคนละเท่าไร รายได้ของคนมั่งมี และคนยากจนแตกต่างกันมากหรือไม่ และถ้าคนส่วนใหญ่ค่อนข้างยากจน คนเหล่านี้มีมากเพียงไร ค่าเหล่านี้คือ ค่าซึ่งบอกลักษณะต่างๆ ของข้อมูล ซึ่งเป็นค่าสถิติอย่างหนึ่ง และสามารถคำนวณหาได้
รูปที่ ๘
อันที่จริงค่าต่างๆ เหล่านี้ พอจะทราบได้อย่างคร่าวๆ จากลักษณะการแจกแจงความถี่ของข้อมูล สมมุติว่า รูปที่ ๘ ได้จากการแจกแจงความถี่ของรายได้ต่อปีของประชากรตามที่กล่าวข้างต้น สิ่งที่ทราบได้อย่างคร่าวๆ จากรูปดังกล่าวก็คือ ประชากรที่มีรายได้ปานกลางค่อนไปทางข้างต่ำมีจำนวนมาก ส่วนประชากรที่มีรายได้ต่ำมาก หรือสูงมากมีจำนวนน้อย นอกจากนั้นช่องว่างระหว่างคนร่ำรวย และคนยากจนกว้างมาก ทั้งนี้เพราะปลายทั้งสองข้างของรูปโค้งห่างกันมาก อย่างไรก็ตามในทางสถิติ ข้อสรุปที่มิใช่ตัวเลขมีความหมายน้อย และไม่สามารถจะนำไปใช้ประโยชน์ในขั้นต่อไปได้ ดังนั้น ข้อสรุปทั้งหลายาของข้อมูลจึงต้องแสดงออกเป็นตัวเลข
เนื่องจากการแจกแจงความถี่ของข้อมูลที่พบส่วนมาก มีลักษณะเป็นโค้งรูประฆัง กล่าวคือ ตรงกลางป่อง และโค้งจะลาดลงทั้งสองข้าง ดังนั้นการหาค่าที่บอกลักษณะสำคัญของข้อมูลที่มีการกระจายลักษณะนี้ ได้แก่ การหาค่ากลาง และการหาค่าการกระจายของข้อมูล ซึ่งจะได้กล่าวเป็นเรื่องๆ ต่อไป
๓.๑ การหาค่ากลางของข้อมูล
ค่ากลางของข้อมูลซึ่งมีที่ใช้มากได้แก่ มัชฌิมเลขคณิต (Arithmetic Mean) มัธยฐาน (Median) และฐานนิยม (Mode)
ก) มัชฌิมเลขคณิตของข้อมูลชุดใดๆ คือ ค่าเฉลี่ยของข้อมูลชุดนั้น ซึ่งอาจเขียนให้อยู่ในรูปสูตรได้ดังนี้
มัชฌิมเลขคณิต = ผลบวกของทุกค่าของข้อมูล/จำนวนข้อมูล
ข) มัธยฐานของข้อมูลชุดใดๆ คือ คะแนนหรือค่า ณ ตำแหน่งกึ่งกลางของข้อมูลชุดนั้น ซึ่งข้อมูลทั้งชุดได้รับการเรียงลำดับแล้ว
ค) ฐานนิยมของข้อมูลชุดใดๆ คือ คะแนนหรือค่าที่มีความถี่สูงสุด หรือซ้ำกันมากที่สุดของข้อมูลชุดนั้น
ตัวอย่าง จงหามัชฌิมเลขคณิต มัธยฐาน และฐานนิยมของข้อมูลต่อไปนี้ ๗ ๗ ๘ ๙ ๑๓ ๑๓ ๑๓
มัชฌิมเลขคณิต = ผลบวกของทุกค่าของข้อมูล/จำนวนข้อมูล
= (๗ + ๗ + ๘ + ๙ + ๑๓ + ๑๓ + ๑๓)/๗
= ๑๐
มัธยฐาน = ๙
ฐานนิยม = ๑๓
๓.๒ การหาค่าการกระจายข้อมูล
การกระจายของข้อมูล หมายถึง การที่ข้อมูลชุดหนึ่งชุดใด มีลักษณะแผ่กว้างออกไปตามแนวนอนของแกนพิกัดฉากของกราฟ
สมมุติว่า มีคะแนนซึ่งได้จากการสอบคิดเลขในใจของเด็ก ๒๐ คน ซึ่งแบ่งเป็น ๒ กลุ่ม กลุ่มละ ๑๐ คน ดังนี้
กลุ่มที่ ๑ ได้คะแนน ๔ ๘ ๕ ๖ ๗ ๑๐ ๒ ๗ ๖ ๘
กลุ่มที่ ๒ ได้คะแนน ๖ ๗ ๖ ๕ ๔ ๖ ๗ ๖ ๘ ๕
ถ้านำข้อมูลทั้งสองชุดนี้มาลงจุด จะเห็นว่า คะแนนของนักเรียนกลุ่มที่ ๑ มีลักษณะแผ่กว้างออกไป หรือมีการกระจายมากกว่าคะแนนของนักเรียนกลุ่มที่ ๒ ดังแสดงด้วยรูปที่ ๙ และรูปที่ ๑๐
รูปที่ ๙
รูปที่ ๑๐
วิธีที่ง่ายที่สุดที่จะเปรียบเทียบระหว่างข้อมูล ๒ ชุดว่า ข้อมูลชุดใดมีการกระจายมากกว่ากัน ได้แก่ การตรวจดูค่าแตกต่างระหว่างคะแนนค่าสูงสุด และคะแนนค่าต่ำสุดของข้อมูลแต่ละชุด ค่าแตกต่างดังกล่าวนี้มีชื่อเรียกว่า "พิสัย" (Range) ข้อมูลชุดใดมีค่าพิสัยสูงกว่า แสดงว่า ข้อมูลนั้นน่าจะมีการกระจายมากกว่า
จากตัวอย่างข้อมูลที่ยกมาข้างต้นนี้จะเห็นว่า
ข้อมูลกลุ่มที่ ๑ พิสัย = ๑๐ - ๒ = ๘
ข้อมูลกลุ่มที่ ๒ พิสัย = ๘ - ๔ = ๔
เนื่องจากพิสัยเป็นสถิติที่ใช้วัดการกระจายได้อย่างคร่าวๆ เท่านั้น ดังนั้นจึงมักไม่เป็นที่นิยมใช้กัน
สถิติวัดการกระจายที่สำคัญ และใช้กันทั่วไป คือ ส่วนเบี่ยงเบนมาตรฐาน (Standard Deviation) ซึ่งหาได้จากการเอาผลต่างระหว่างข้อมูลแต่ละค่า และมัชฌิมเลขคณิตของข้อมูลนั้นมายกกำลังสอง แล้วทำการถัวเฉลี่ยค่ากำลังสองเหล่านั้น จากนั้นจึงถอดกรณฑ์ที่สองของค่าเฉลี่ยที่ได้
จากข้อมูลกลุ่มที่ ๒ หาค่าส่วนเบี่ยงเบนมาตรฐานได้ดังนี้
ค่าที่ได้จากการวัดการกระจายของข้อมูล เป็นสถิติสำคัญที่นำไปใช้ประโยชน์อย่างกว้างขวาง ค่าปานกลางเพียงอย่างเดียว ไม่สามารถใช้บรรยายลักษณะสำคัญของข้อมูลทั้งกลุ่มได้เพียงพอ เช่นคนกลุ่มหนึ่งมีรายได้เฉลี่ยค่อนข้างสูง แต่มิได้หมายความว่า ทุกคนในกลุ่มนั้น จะต้องมีรายได้สูงไปด้วย อาจจะมีบางคน ซึ่งมีรายได้สูงมากและต่ำมากรวมอยู่ด้วย หรือทั้งกลุ่มอาจจะมีรายได้ไล่เลี่ยกัน ไม่แตกต่างกันมากนักก็เป็นได้ ลักษณะเช่นที่ว่านี้จะต้องดูจากการกระจายของ ข้อมูลซึ่งบางกลุ่มก็มีการกระจายมาก บางกลุ่มก็มีน้อย
นอกจากนี้ประโยชน์ที่ได้จากการกระจายของข้อมูล ก็คือการนำไปใช้ใน การควบคุมคุณภาพของผลิตภัณฑ์บางอย่าง โดยพิจารณากำหนดว่า สิ่งของที่ ผลิตได้ อาจจะเบี่ยงเบนไปจากคุณภาพมาตรฐานได้บ้าง แต่ต้องไม่เกินเท่าไร และทำนองเดียวกัน ในด้านของการพยากรณ์ก็จะสามารถใช้ค่าการกระจายเป็น ตัวกำหนดได้ว่า การพยากรณ์นั้นๆ จะเชื่อถือได้มากน้อยเพียงไร และถ้าจะ พยากรณ์คลาดเคลื่อนจากความจริงไปบ้างจะไม่มากหรือน้อยกว่าเท่าไร เป็นต้น
๔. แนวโน้มของข้อมูล (Trend)
ข้อมูลบางชนิดแสดงถึงเหตุการณ์ที่เกิดขึ้นเป็นรายคาบเวลา เช่น ปริมาณสินค้าส่งออกเป็นรายปี จำนวนอุบัติเหตุรถยนต์บนท้องถนนเป็นรายสัปดาห์ ปริมาณน้ำฝนที่ตกเป็นรายเดือน เป็นต้น ข้อมูลประเภทนี้เรียกว่า ข้อมูลอนุกรมเวลา (Time-series data)
ถ้านำข้อมูลประเภทนี้ที่เกิดขึ้นในช่วงเวลาหนึ่งซึ่งยาวนานพอสมควรมาลงจุดจะได้เส้นกราฟ ซึ่งมีลักษณะโดยส่วนรวมอาจชันขึ้น หรือลาดลง หรือมีทั้งชันขึ้นหรือลาดลงในช่วงเวลาหนึ่งเช่นในรอบ ๑ ปี เป็นต้น ลักษณะโดยส่วนรวมที่ชันขึ้น หรือลาดลงของเส้นกราฟในช่วงเวลายาวนานนี้ เรียกว่า แนวโน้มของข้อมูล
วิธีการหาแนวโน้มของข้อมูลอาจแบ่งได้เป็น ๒ วิธีใหญ่ๆ คือ
๑) วิธีการกะประมาณ ซึ่งโดยมากใช้การลากเส้นอย่างอิสระ (Freehandmethod)
๒) วิธีการคำนวณ ที่นิยมใช้ก็มีการถัวเฉลี่ยเคลื่อนที่ (Moving averagemethod) และวิธีกำลังสองน้อยที่สุด (Least squares method) ซึ่งวิธีหลังนี้จะได้แนวโน้มอยู่ในรูปของสมการ
๔.๑ การลากเส้นอย่างอิสระ
การสร้างแนวโน้มด้วยวิธีนี้ คือ การลากเส้น ซึ่งเป็นแนวเรียบผ่านไปในระหว่างเส้นกราฟของข้อมูล ซึ่งปกติจะมีบางตอนหักเหขึ้น และบางตอนหักเหลง เส้นซึ่งเป็นแนวเรียบนี้แสดงถึงความเป็นไปโดยส่วนรวมในระยะยาวของเหตุการณ์ทั้งหมดที่เกิดขึ้น ซึ่งเราเรียกว่า แนวโน้มของข้อมูล การลากเส้นอย่างอิสระนี้ไม่มีกฎเกณฑ์ใดๆ ทั้งสิ้น นอกจากคอยระมัดระวังให้แนวโน้ม แสดงถึงเหตุการณ์ที่เกิดขึ้นในระยะยาวได้ถูกต้องเท่านั้น ดังแสดงด้วยรูปข้างล่างนี้
รูปที่ ๑๑
๔.๒ การถัวเฉลี่ยเคลื่อนที่
สมมุติว่า มีข้อมูลจำนวนหนึ่ง ซึ่งเก็บรวบรวมไว้เป็นรายเดือน ถ้าเราหาค่ามัชฌิมเลขคณิตของข้อมูลในช่วงเวลาหนึ่ง เช่น ในรอบ ๓ เดือน เป็นต้น แล้วจดค่านี้ไว้ จากนั้นก็เลื่อนช่วงเวลา ๓ เดือนนี้ต่อไป โดยตัดข้อมูลตัวแรกออก และเพิ่มข้อมูลตัวที่ ๔ เข้ามา แล้วก็หามัชฌิมเลขคณิตของช่วงเวลาดังกล่าวนี้อีก และจดค่าที่คำนวณได้ไว้ ทำเช่นนี้เรื่อยๆ ไป ก็จะได้ข้อมูลชุดใหม่ ซึ่งเป็นค่ามัชฌิมเลขคณิตของข้อมูลทุกๆ ๓ เดือนต่อเนื่องกัน วิธีการเช่นนี้เรียกว่า การถัวเฉลี่ยเคลื่อนที่ ๓ เดือน ในข้อมูลบางชุด อาจทำการถัวเฉลี่ยเคลื่อนที่ทุก ๕ เดือน หรือทุก ๓ ปี หรือทุก ๕ ปีก็ได้ ทั้งนี้ขึ้นอยู่กับชนิด และลักษณะของข้อมูล
เมื่อนำค่ามัชฌิมเลขคณิตเคลื่อนที่ที่ได้นี้มาลงจุด แล้วโยงจุดต่างๆ เหล่านี้ ก็จะได้เส้นซึ่งแสดงแนวโน้มของข้อมูลเป็นรายเดือน
ตารางข้างล่างนี้เป็นการคำนวณหาแนวโน้มของราคาเฉลี่ยต่อเกวียนของ ข้าวเปลือกเจ้าชั้นพิเศษ ๑๐๐% ที่ซื้อขายกันในตลาดกรุงเทพมหานคร ระหว่าง เดือน มกราคม ถึง ธันวาคม ๒๕๒๒ โดยวิธีการถัวเฉลี่ยเคลื่อนที่ ๓ เดือน
(ตัวเลขมีหน่วยเป็นบาท)
ที่มา :รายงานเศรษฐกิจ ธนาคารกรุงไทยจำกัด มิถุนายน ๒๕๒๒
เมื่อนำเอาค่ามัชฌิมเลขคณิตเคลื่อนที่ 3 เดือนมาลงจุด จะได้แนวโน้มของราคาเฉลี่ยต่อเกวียนของข้าวเปลือกเจ้าชั้นพิเศษ ๑๐๐% ในรอบปี พ.ศ. ๒๕๒๒ ดังแสดงในรูปข้างล่างนี้
รูปที่ ๑๒ แสดงแนวโน้มราคาเฉลี่ยต่อเกวียนของข้าวเปลือกเจ้าชั้นพิเศษ ๑๐๐%
ที่ซื้อขายกันในตลาดกรุงเทพมหานคร ระหว่างเดือนมกราคม - ธันวาคม ๒๕๒๒
อันที่จริงเส้นที่ได้นี้ จะไม่ถือว่าเป็นแนวโน้มก็ได้ เพราะมิได้แสดงถึงแนวโน้มของเหตุการณ์ที่เกิดขึ้นในระยะยาวอย่างแท้จริง หากแต่เป็นเส้นซึ่งช่วยลดการกระเพื่อมขึ้นลงของเส้นกราฟอันเกิดจากข้อมูลเดิมให้เรียบขึ้นเท่านั้น
แนวโน้มของข้อมูลเป็นเครื่องมืออย่างหนึ่งที่ใช้ในการพยากรณ์ ส่วนที่ต่อจากปลายแนวโน้มออกไปคือ คำพยากรณ์ ดังนั้น ถ้าทำการวิเคราะห์ข้อมูล ด้วยการศึกษาแนวโน้ม อย่างละเอียดลออทุกแง่ทุกมุมแล้ว จะช่วยเพิ่มความแม่นยำ ให้แก่การพยากรณ์ยิ่งขึ้น
๕. การพยากรณ์ทางสถิติ
เมื่อเอ่ยคำว่า พยากรณ์ บางคนอาจนึกถึงโหรหรือหมอดู เพราะการพยากรณ์ก็คือ การทำนายล่วงหน้า ซึ่งมักเป็นงานของโหร แต่การพยากรณ์มิใช่งานผูกขาดของโหร ใครๆ ก็พยากรณ์ได้ ต่างกันก็แต่ว่า หลักเกณฑ์และวิธีการที่ใช้ในการพยากรณ์ แตกต่างกันอย่างไรเท่านั้น การพยากรณ์ที่ทำกันโดยทั่วไปมีอยู่ ๓ วิธี คือ
๕.๑ พยากรณ์โดยอาศัยประสบการณ์และความชำนาญ
วิธีนี้นิยมใช้กันมาก เนื่องจากไม่ต้องมีหลักเกณฑ์ที่แน่นอนอะไร เพียงแต่อาศัยประสบการณ์ และความรู้ความชำนาญทางด้านนี้ ตลอดจนเข้าใจแจ่มแจ้งในปัญหาของเรื่องที่จะพยากรณ์ เช่น สมาคมผู้ค้าข้าวโพดทำการประเมินผลผลิตข้าวโพดประจำปี โดยการส่งคณะเจ้าหน้าที่ออกไปตระเวนดูสภาพของต้นข้าวโพด ในท้องที่ที่มีการปลูกข้าวโพดมากทั่วประเทศ แล้วเปรียบเทียบว่า สภาพต้นข้าวโพดในปีนี้ดีหรือเลวกว่าปีที่แล้วเพียงไร ปลูกในเนื้อที่มากขึ้น หรือลดลง จากนั้นก็พยากรณ์ผลผลิตข้าวโพด โดยใช้ผลผลิตของปีที่แล้วเป็นหลักว่า ควรเพิ่มหรือลดลงเท่าไร
อย่างไรก็ตาม การพยากรณ์ด้วยวิธีนี้ สามารถนำไปใช้ได้ในกรณีที่มีการดำเนินงานในขอบเขตขนาดเล็กเท่านั้น อนึ่ง การพยากรณ์ด้วยวิธีนี้ แม้จะเป็นวิธีที่ง่าย แต่ก็มีโอกาสผิดพลาดได้มาก โดยเฉพาะอย่างยิ่งถ้าผู้พยากรณ์ไม่มีประสบการณ์ หรือขาดความรู้ความชำนาญเกี่ยวกับเรื่องที่จำทำการพยากรณ์
๕.๒ พยากรณ์โดยอาศัยเหตุการณ์ และหลักฐานบางอย่าง
การพยากรณ์ด้วยวิธีนี้ มักมีการอภิปรายประกอบหลักฐานกันอย่างกว้างขวางแล้วสรุปหาข้อยุติ หลักฐานเหล่านี้อาจเป็นหลักฐานทางนิติศาสตร์ ทางการเมือง ทางเศรษฐกิจ และสังคม ตัวอย่างเช่น เมื่อสงครามโลกครั้งที่สองได้สิ้นสุดลง ก็มีผู้พยากรณ์ว่า จะเกิดภาวะข้าวยากหมากแพง โจรผู้ร้ายชุกชุม เช่นเดียวกับที่เคยเกิดมาแล้ว ภายหลังสงครามโลกครั้งที่หนึ่ง เป็นต้น การพยากรณ์แบบนี้อาจกล่าวในเชิงคณิตศาสตร์ได้ว่า ตั้งอยู่บนรากฐานของ"ตัวแปรที่วัดค่าไม่ได้"
๕.๓ การพยากรณ์ทางสถิติ
เป็นการพยากรณ์โดยใช้ข้อมูลสถิติประเภทที่เรียกว่า ข้อมูลอนุกรมเวลาเป็นเครื่องมือ การพยากรณ์โดยวิธีนี้ จะต้องศึกษาถึงพฤติการณ์ของเรื่องนั้นๆ ที่เกิดขึ้นในอดีตว่า มีลักษณะอย่างไรเสียก่อน แล้วจึงทำการพยากรณ์ ข้อมูลอนุกรมเวลาจะบอกให้ทราบถึงพฤติการณ์นั้นๆ ตัวอย่างของการพยากรณ์ทางสถิติในเรื่องที่เกี่ยวกับเศรษฐกิจ และธุรกิจ ได้แก่ การพยาการณ์จำนวนประชากรของประเทศ การพยากรณ์ผลผลิตทางการเกษตร ปริมาณการขาย ระดับราคาสินค้า ฯลฯ เป็นต้น
การพยากรณ์ทางสถิติจะทำได้ต่อเมื่อพฤติการณ์ที่เกิดขึ้นในอดีตมีความแปรผันตามปกติ เช่น แต่ละปีที่ผ่านไป จำนวนประชากรของโลกมีแนวโน้มเพิ่มขึ้นเรื่อยๆ หรืออัตราการตายของเด็กอายุต่ำกว่า ๑ ปี มีแนวโน้มลดลงอย่างสม่ำเสมอ หรือสินค้าเครื่องกันหนาวจะขายได้มากในฤดูหนาว แต่จะขายได้น้อยในฤดูอื่นๆ เป็นต้น แต่ถ้าพฤติการณ์ที่เกิดขึ้นในอดีต มีความแปรผันผิดปกติ เช่น สินค้าเครื่องกันหนาว แทนที่จะขายได้น้อยในฤดูอื่นนอกจากฤดูหนาวเป็นประจำทุกปี กลับกลายเป็นว่า บางปีขายได้มาก บางปีก็ขายได้น้อย เอาแน่นอนอะไรไม่ได้ พฤติการณ์ทำนองนี้การพยากรณ์ทางสถิติไม่สามารถทำได้
ตัวอย่างของการพยากรณ์จะดูได้จากรูปที่ ๑๑ โดยต่อเส้นแนวโน้มออกไปค่าที่อ่านได้บนแกนตั้ง ณ ปีที่ต้องการ คือ รายได้จากการขายผลิตภัณฑ์เคมี ซึ่งคาดว่า บริษัทดวงดี จำกัด จะได้รับโดยประมาณ ณ ปีนั้น
การพยากรณ์ทางสถิติอาจทำได้โดยการคำนวณจากสมการของแนวโน้ม (หาได้โดยวิธีกำลังสองน้อยที่สุด) สมมุติว่า แนวโน้มที่แสดงในรูปที่ ๑๑ มีสมการเป็น
y = ๑.๕ + ๐.๔๘ x
เมื่อ y = รายได้จากการขายผลิตภัณฑ์เคมีมีหน่วยเป็นแสนบาท
x = หน่วยแสดงเวลาเป็นปี เริ่มจาก ๐, ๑, ๒, ๓,...
สมมุติว่าถ้าต้องการพยากรณ์รายได้จากการขายในปี พ.ศ. ๒๕๒๓ จะได้ค่า x = ๑๖ นำค่า x ไปแทนในสมการจะได้
y = ๑.๕ + (๐.๔๘ x ๑๖)
= ๙.๑๘
เนื่องจาก y มีหน่วยเป็นแสนบาท
y = ๙.๑๘ x ๑๐๐,๐๐๐
= ๙๑๘,๐๐๐ บาท
อย่างไรก็ตาม ค่าที่พยากรณ์ได้นี้เป็นเพียงค่าประมาณเท่านั้น ทั้งนี้เพราะการพยากรณ์ทางสถิติ ตั้งอยู่บนสมมุติฐานที่ว่า "สิ่งอื่นไม่เปลี่ยนแปลง" นั่นถือว่า เหตุการณ์อื่นๆ ที่จะเกิดขึ้นในช่วงเวลาของการพยากรณ์ เหมือนกันกับที่เกิดขึ้นในช่วงเวลาที่แล้วๆ มา แต่ความเป็นจริงมิได้เป็นเช่นนั้น เพราะเหตุการณ์ที่จะเกิดขึ้นในช่วงเวลาของการพยากรณ์ น่าจะคล้ายคลึงกับเหตุการณ์ที่เพิ่งเกิดขึ้นเมื่อเร็วๆ นี้มากกว่าเหตุการณ์ที่เกิดขึ้นเมื่อนานมาแล้ว ยิ่งกว่านั้นในขณะที่จะทำการพยากรณ์หากบังเอิญไปอยู่ในวัฏจักร (Cycle) ที่เศรษฐกิจกำลังรุ่งเรืองถึงขีดสุด (Peak) ค่าที่พยากรณ์ได้จะสูงกว่าความเป็นจริง เพราะปกติวิสัยของเศรษฐกิจในช่วงเวลาถัดไป จะเริ่มตกต่ำ (Contraction) และในทางตรงข้าม ถ้าอยู่ในวัฏจักรที่เศรษฐกิจกำลังตกต่ำถึงที่สุด (Trough) ค่าที่พยากรณ์ได้ ก็จะต่ำกว่าความเป็นจริง เพราะปกติวิสัยของเศรษฐกิจในช่วงเวลาถัดไปจะเริ่มฟื้นตัวดีขึ้น (Expansion)
นอกจากนี้เหตุการณ์ที่เกิดขึ้นโดยมิได้คาดหมายบางอย่าง เช่น การเกิดสงคราม การค้นพบสิ่งประดิษฐ์ใหม่ๆ รสนิยม และทัศนคติของประชาชนที่เปลี่ยนแปลงไป ก็มีส่วนกระทบกระเทือนต่อความถูกต้องของการพยากรณ์ด้วย เช่น ในการพยากรณ์ประชากรของโลกใน ๑๐ ปีข้างหน้า หากเกิดสงครามขึ้นในระหว่างนี้ก็ดี หรือเกิดโรคระบาดอย่างใหม่ ทำให้ผู้คนล้มตายเป็นจำนวนมากก็ดี กรณีเหล่านี้ ก็ย่อมทำให้ค่าที่พยากรณ์ได้ ต้องคลาดเคลื่อนจากความเป็นจริงไปได้
อย่างไรก็ตาม แม้การพยากรณ์ทางสถิติจะมีข้อจำกัดในการใช้อยู่มากก็ตาม แต่เมื่อเปรียบเทียบกับวิธีการพยากรณ์ทั้งสองวิธีที่กล่าวมาแล้ว การพยากรณ์ทางสถิติก็จัดว่า มีหลักการ และวิธีการที่ดีกว่า เพราะนอกจากจะต้องใช้ความรู้ความชำนาญ และประสบการณ์เกี่ยวกับเรื่องที่จะพยากรณ์เหมือนสองวิธีที่กล่าวแล้ว การพยากรณ์ทางสถิติยังมีข้อมูลซึ่งแสดงถึงเหตุการณ์ต่างๆ ที่เกิดขึ้นในอดีต เป็นเครื่องชี้แนวทางพยากรณ์ นอกจากนั้นข้อมูลเหล่านี้ยังช่วยให้สามารถคำนวณได้ว่า ค่าที่พยากรณ์ได้อาจผิดพลาดจากความจริงได้ไม่เกินเท่าไร และสามารถเชื่อถือได้มากน้อยเพียงไรอีกด้วย ดังนั้นการพยากรณ์ทางสถิติ จึงนับว่าเป็นเครื่องมือที่สำคัญ และมีความจำเป็นต่อการกำหนดนโยบาย และวางแผนงานบางอย่างทั้งของรัฐบาล และของเอกชนซึ่งจะขาดเสียมิได้